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Introduction

X-ray observations of thermal emission show periodic
variabilities in single neutron stars, indicating to the
anisotropic temperature distribution. The Magnificent Seven is
the informal name of a group of isolated young cooling
neutron stars at a distance of 120 to 500 parsecs from Earth.
These objects are also known under the names XTINS (X-ray
Thermal Neutron Stars).



Structure



Influence of the magnetic field

Magnetic field creates anisotropy in heat flux, so heat
coefficients are determined by tensor.



Influence of the magnetic field
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Boltzmann equation
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For collision integral we take into account only pair collisions:

J = Jee + JeN = D
∫

[f
′
f
′
1 (1− f )(1− f1)−ff1(1− f

′
)(1− f

′
1 )]×

geebdbdεdc1i +
∫

[f
′
f
′
N(1− f )− ffN(1− f

′
)]× geNbdbdεdcNi

The integration in electron part of the collision integral is
performed over the phase space of the incoming particles
(dc1i ), and the physical space of their arrival (b db dε).



Solution method

I Subsequent approximations method:
I Zeroth approximation for electron distribution function:

f0 = [1 + exp mev2−2µ
2kT ]−1.

I First approximation for electrons: f = f0[1 + χ(1− f0)]
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0
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kT where Gn(x0) are
Fermi integrals.

I Functions Ai ,ANi и Di ,DNi determine the heat conductivity
and diffusion.

I Ai = A1vi + A2εijkvjBk + A3Bi (vjBj)

I ξ = A1 + iBA2



Solution method

I Sonine polynomial are coefficients of the expansion of the
function (1− s)−
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I For degenerate case we have to seek solution in the form of an
expansion in polynomials Qn, that are orthogonal with weight
f0(1− f0)x3/2 analoguos to Sonine polynomials:
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Tensor of heat conductivity in a general form

I ξ = a0Q0 + a1Q1 + a2Q2

a0 = a10 + iBb1
0 a1 = a11 + iBb1

1 B2 c10 = (a10)B=0 − a10
B2 c11 = (a11)B=0 − a11

qi = −λik
∂T

∂rk
,

λik =
5
2

k2Tne

me

G5/2

G3/2

{[
a10 −

(
7
2

G7/2

G5/2
− 5

2
G5/2

G3/2

)
a11

]
δik

− εiknBn

[
b1
0 −

(
7
2

G7/2

G5/2
− 5

2
G5/2

G3/2

)
b1
1

]

+BiBk

[
c10 −

(
7
2

G7/2

G5/2
− 5

2
G5/2

G3/2

)
c11

]}



Heat conductivity of strongly degenerate electrons in the
presence of magnetic field: Lorentz approximation
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The average frequency of electron-ion collisions

The average frequency of electron-ion collisions νei is written in the form
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The average time τei between (ei) collisions is the inverse value of νei , and is
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Heat conductivity of strongly degenerate electrons in the
presence of magnetic field: Lorentz approximation

Coefficients of heat conductivity, obtained by solving Boltzmann equation in
Lorentz approximation:
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Heat conductivity of strongly degenerate electrons in the
presence of magnetic field: Lorentz approximation
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The plots of the ratio λ⊥/λ‖ as a function of ωτ are presented for
phenomenologically obtained heat conductivity (dash-dot line) for comparison
with heat conductivity obtained by the solution of Boltzmann equation in
Lorentz appoximation (solid line) with kT = 0.09Ef At ωτ = 1.5 exact value 4
times smaller than at phenomenological curve.



Conclusion

I We obtain, for the first time, in three polynomial
approximation, with account of electron-electron collisions,
analytical expressions for the heat conductivity tensor for
non-degenerate electrons, in presence of a magnetic field.

I For strongly degenerate electrons we obtain, for the first time,
an asymptotically exact analytical solution for the heat
conductivity tensor in presence of a magnetic field. This
solution has considerably more complicated dependence on the
magnetic field than those in previous publications, and gives
several times smaller relative value of a thermal conductivity
across the magnetic field at ωτ & 0.8.



Thank you for your attention!


