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Introduction

Absorption

Source, RX J |Spin Periods, s| Amplitude/2 | Temperature, eV | .
| line energy, eV

1856.5-3754 |7.06 |1.5% |60-62 1o
0720.4-3125 |8.39 1% 8587 270
1605.3+3249 | . I i |
(®BS 1556) | *"" 9396 450
1308.6+2127 ) 5

(®BS 1223 |01 18% 102 300
2143.0+0654 .

wBs 1w [ 4% 102-104 700
0806.4—4123 |11.37 6% 92 1460
0420.0-5022 |3.45 13% 45 1330

X-ray observations of thermal emission show periodic
variabilities in single neutron stars, indicating to the
anisotropic temperature distribution. The Magnificent Seven is
the informal name of a group of isolated young cooling
neutron stars at a distance of 120 to 500 parsecs from Earth.
These objects are also known under the names XTINS (X-ray
Thermal Neutron Stars).
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Influence of the magnetic field

Magnetic field creates anisotropy in heat flux, so heat
coefficients are determined by tensor.



Influence of the magnetic field
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Influence of the magnetic field
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Influence of the magnetic field

18.31. The free-path theory of conduction of heat, und diffusion, in a
magnetic field,. We now consider a simple free-path theory of diffusion and
heat conduetion in an ionized gas at rest in the presence of & magnetic field,
using a method somewhat analogous to that of 6.3 and 6.4. As in 18.3,
the magnetic field is taken to be parallel to Or, and in addition it is
agsumed that the density, temperature, and composition are functions of z
alone, and that X, = 0.

We assume, purely as a convenient rough approximation, that the mean
time between successive collisions of & molecule m;, has the same value 7,
whatever the molecular speed. With this assumption, by an argument
similar to that of 6.41, e~/"sis the probability that at any given instant a
molecule m, has travelled without collision for a time at least equal to £.

The number of collisions per unit time experienced by molecules m, in a
volumer, dr ia n, dr/r,. Let x,(¢,, z) de,dr /7, denote the number of these which
result in & molecule m, entering the velocity-range e,, de,; as the notation
implies, it is assumed that y, depends only on the magnitude of ¢,, and not
on its direction. In a gas in the uniform steady state y, is identical with
Maxwell’s function f,, since the number of molecules entering any velocity-
range through collision is equal to the number leaving. In general y, will
differ only slightly from f,.

We consider first diffusion. Since free-path methods seem unable to give
an adequate theory of thermal diffusion, arising from inequalities of tem-
perature, we asaume that the temperature is uniform.



Influence of the magnetic field
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The velocity of diffusion of the molecules s, when the magnetic field is
absent is found by putting w;, = 0 in 3. The m of the magnetic fieid

accordingly results in a reduetion in the velovity of diffusion parailel to Oz in
the ratio !: (1 4 wird).



Influence of the magnetic field

Clearly 3 and 4 can only be approximate results; it is actually not possible,
with any values of 7, and 7,, for these formulae to be consistent, for all values
of H, with the conditions that the gas as a whole should be at rest,* namely

Ny Wy Uy + Ry ly = 0, nym, W Fngm@w, =0, L. 5

(Consequently results based on 3 and 4 must be treated with reserve; we
cannot expect to deduce from them more than the relative order of magni-
tude of the direct and Hall currents, and the order of magnitude of the
reduction in the conductivity Using 3 and 4, the direct and Hall currents
are found to be
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Boltzmann equation

of of e 1 of
E + C,'afri + E(Ei + EeilekBl)% +J=0.

For collision integral we take into account only pair collisions:

J=JeetJen=D [[f (1 F)1—-f)— A1 —F)(1—F)]x
geebdbdedcy; + [[f (1 — f) — fiy(1 — £')] x genbdbdedey;

The integration in electron part of the collision integral is
performed over the phase space of the incoming particles
(dcyi), and the physical space of their arrival (b db de).



Solution method

v

Subsequent approximations method:

Zeroth approximation for electron distribution function:
2

fo = [1+ exp Te¥ —2] -1,

First approximation for electrons: f = f[1 + x(1 — f)]

— _A.0INT _ A.55/2
X =—A; ar; neDjd Gs/2’
_ OInT . .Gs/z
XN = Ani ar; ny Dy d [y
_ 1 o0 x"Ldx )
Gn(x0) = iy Jo Trep(ox)’ X0 = 7 Where Gy(x) are

Fermi integrals.

Functions A;, An; n D;, Dy; determine the heat conductivity
and diffusion.

A = Al Vi + A2€ijijBk + A3B,(VJBJ)
£ = Al + iBA?



Solution method

» Sonine polynomial are coefficients of the expansion of the

function (1 — 5)7%71
3 XS

(1-s) 2 el—S—ZS (x)s”

x5,
el in powers of s:
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> S =1 S =5 —x SI0) = F - Ix+ 5
» For degenerate case we have to seek solution in the form of an
expansion in polynomials @,, that are orthogonal with weight
fo(1 — fo)x3/? analoguos to Sonine polynomials:
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Tensor of heat conductivity in a general form

> £ =2a30Q0 + a1Q1 + a2Q»
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Heat conductivity of strongly degenerate electrons in the

presence of magnetic field: Lorentz approximation

Gs 2
2G3/2

fo(1 — fo)(u? — ) = —iBfy(

+

fo(1— fo)nNE/(l — cos 0)genbdbde.

The function £ is defined by expression
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The avera -ion collisions

The average frequency of electron-ion collisions v is written in the form

4 [2w  Z2e*nyA 1
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In the limiting cases it is expressed as

4 |27 Z2e*nyN
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The average time 7 between (ei) collisions is the inverse value of v;, and is
written as
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Heat conductivity of strongly degenerate electrons in the

presence of magnetic field: Lorentz approximation

Coefficients of heat conductivity, obtained by solving Boltzmann equation in
Lorentz approximation:
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Heat conductivity of strongly degenerate electrons in the

presence of magnetic field: Lorentz approximation
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The plots of the ratio AJ_/)\” as a function of wT are presented for
phenomenologically obtained heat conductivity (dash-dot line) for comparison
with heat conductivity obtained by the solution of Boltzmann equation in
Lorentz appoximation (solid line) with kT = 0.09Ef At wt = 1.5 exact value 4
times smaller than at phenomenological curve.



Conclusion

» We obtain, for the first time, in three polynomial
approximation, with account of electron-electron collisions,
analytical expressions for the heat conductivity tensor for
non-degenerate electrons, in presence of a magnetic field.

» For strongly degenerate electrons we obtain, for the first time,
an asymptotically exact analytical solution for the heat
conductivity tensor in presence of a magnetic field. This
solution has considerably more complicated dependence on the
magnetic field than those in previous publications, and gives
several times smaller relative value of a thermal conductivity
across the magnetic field at wr 2> 0.8.



Thank you for your attention!



