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Abstract

An analytical description of a new broad class of the cylindrically 
symmetric magnetostatic structures (filaments) in a collisionless relativistic 
multicomponent plasma is given by means of the method of invariants of 
particle motion (PRL 104 (2010) 215002; Physics-Uspekhi 59 (2016) 1165).

Namely, the Vlasov-Maxwell equations are reduced to a nonlinear 
damped oscillator equation, with an explicit form of an effective nonlinear 
potential, for the particle distribution functions (PDFs) with a polynomial-
exponential dependence on a longitudinal momentum. The particle 
distributions may be essentially different from the Maxwellian ones and 
vary along the radial direction self-consistently with the profile of azimuthal
magnetic field of the filament. 

We present a classification of possible radial profiles of a current 
density in these filaments, including zero, finite and infinite values of the 
total current as well as various spatial scales, both thin and thick with 
respect to a typical particle gyroradius.



Fonseca, Silva et al (2003).

Magnetic field energy density for values of 15% of the maximum energy density. 
Results are shown slightly before saturation and in the quasi-static stage (B~ 1%).

3D Weibel instability in e- -e+ plasma



Collision of laser collisionless plasma jets



Nonlinear evolution

• Quasineutrality

• Magnetic energy can approach equipartition

• Current filaments merge due to Ampère force

• Spatial scale increases

• Slow magnetic field decay

• Metastable configurations

Equal treatment of relativistic and non-relativistic plasma  



Examples of solutions with fixed energy distribution of 
particles: Bennett, 1934; Harris, 1962;  Vasko, 2013.

For Bennett pinch with maxwellian PDF the 
momentum distribution is universal in space:
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An example of magnetic field generation in a collisionless shock modelling. 
Frederico Fiuza, Lawrence Livermore National Laboratory 
(https://www.alcf.anl.gov/projects/particle-acceleration-shocks-
astrophysics-laboratory-silico and http://arxiv.org/pdf/1210.2643.pdf).

Introduction

Current density j and 
magnetic field B 
depend on radius 

https://www.alcf.anl.gov/projects/particle-acceleration-shocks-astrophysics-laboratory-silico
http://arxiv.org/pdf/1210.2643.pdf


Can there be cylindrical magnetostatic analytic solutions 
having arbitrary dependence on particle energy?

V.Ju. Martyanov, Vl.V. Kocharovsky, V.V. Kocharovsky, JETP 107, 1049 (2008);

Radiophys. Quant. Electr. 52, n. 2, p. 79 (2009); Astronomy Lett. 36, 396 (2010); 

Phys. Rev. Lett. 104, 215002 (2010).

Assuming magnetic field is stronger than electric field, we work in that frame of reference 
where electric field vanishes (Gedalin et al., Journal of plasma physics 77, n.2 (2011)):

Maxwell-Vlasov equations



Integrals of particle motion

Any PDF expressed as a function of integrals of particle motion 

satisfies the Vlasov equation (for a given sort of particles):

Distribution functions must be nonnegative and give finite particle 

density:



Grad-Shafranov equation and polynomial–exponential PDF

a polynomial of order



1D harmonic solution of the nonlinear problem (d=2)



Polynomial PDF with d = 2: Bessel solution

Approximation as superposition of finite 
number of planar harmonic perturbations:

Stability condition is satisfied only up to a certain radius 
where the plasma is magnetized enough. Beyond this 
radius, particular properties of how the current filament is 
embedded in the background plasma should be considered.



Grad-Shafranov potential and effective viscous damping
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Classification of solutions

Vector potential A as a function of cylindrical radius can have

I) an infinite number of oscillations near a local minimum of potential 
U(A) (Bessel-like solution);

II) no oscillations and goes to infinity, admitting nonzero filament's net 
current, as in Bennett pinch. Current density can have the same sign 
throughout the filament and the particle densities can vanish at infinity;

III) a finite number of oscillations (or no oscillations) and stops at a local 
maximum of the Grad-Shafranov potential, meaning the filament's net 
current is zero.



Shielded current filament (Taylor order d=3)



Single current filament (Taylor order d = -1)

I = 



Bennett  pinch  (PDF of exponential type)

finite  I



Bennett pinch





Examples of double-scale and tubular filaments



Limiting case of Bennett pinch with 
current along a wire on the axis
I = (1-q)cA0. If q > 1, the latter is 
opposite to the pinch current, which is 
expelled from the axis area and 
localized in a hollow tube.

Generalized relativistic Bennett pinch

double-scale filament with small w=0.1



Shielded current filaments (Taylor order d=3, d=4)







Classification of the current filaments

For the cylindrically symmetrical filaments with a purely azimuthal
magnetic field, the method of particle motion invariants admits only 
the following three qualitatively different types of the self-consistent 
structures.

I. The first type assumes an unlimited value of the vector 
potential Az. This implies that the Az is a monotonic function and the 
azimuthal component of the magnetic field is of the same sign for all 
values of the radial variable ρ. The current density may be sign-
changing, although the current through any circular area 
perpendicular to z with a center on z has the same sign. A total 
current can be either finite or zero. The plasma can be localized near 
axis z, with its density exponentially vanishing with an increasing 
distance from the axis.



II. In the second type, the range of values of Az is limited and its 
derivative with respect to ρ (the azimuthal component of magnetic field) 
changes sign a finite number of times. So, the “motion” of the oscillator 
(i.e., Az) in the Grad-Shafranov potential starts at ρ = 0 with sliding down 
the slope of the well and ends on a local summit or, in a degenerate case, 
at the point where the first two derivatives of U(Az) with respect to Az

vanish.
A bottom of the potential well cannot be reached in an infinitely slow 

monotonic manner since a general solution to the oscillator equation with 
a viscous friction and a zero right-hand side is Az = c1 + c2·ln ρ. So, even for 
a completely flat bottom the motion is unlimited and the “friction” cannot 
stop the motion at a finite distance. Between the beginning and the end of 
the motion, there could be a few reflections from the potential walls that 
are higher than the final summit. The total current is absent, the magnetic 
field declines faster than 1/ρ with the increase of ρ. In the general case, 
the summit (hilltop) on the vector potential's profile has a quadratic form. 
Hence, the magnetic field and the current density decline exponentially.



III. In the third type, the range of values of Az is limited, the 
Az oscillates infinitely many times near the well's bottom with the 
increase of ρ. In a general case, as the amplitude of these 
oscillations decreases, the profile of the well's bottom can be 
approximated by a parabola, which yields a Bessel-type solution. 
The amplitudes of oscillations of Az, the magnetic field and the 
current density decrease as 1/ρ when ρ increases.

In the case when the series expansion of the Grad-
Shafranov potential near the bottom starts with a term higher 
than quadratic, the infinitely many oscillations also exist, although 
their period grows with ρ. The resulting current configuration 
constitutes a finite or infinite collection of concentric current 
cylinders, among which the ones on the outside have, as a rule, a 
larger value of the total current and a lower current density than 
the inside ones.



Conclusions

We investigate in detail several simplest cases of the exponential, sum of 
two exponentials, quadratic, third- and fourth-order polynomial PDFs. 

In the first case we find a generalization of the Bennett pinch for arbitrary 
energy distribution of particles, which influences strongly the filament size as 
compared to the Maxwellian distribution for a given value of total current. In the 
third case we come to a current density profile with the radial oscillations 
described by the Bessel function with a spatial scale which also depends strongly 
on the energy distribution of particles. 

In more complicated other cases we obtain well localized filaments with 
zero or finite total current and show that there are possible solutions with one or 
more changes of current density direction and a few changes of sign of the 
azimuthal magnetic field. 

Our analytical results may be applied to the interpretation of the 
numerical simulations of the collisionless shock waves and to the analysis of 
various long-lived magnetic structures in the astrophysical plasmas (jets, winds, 
accretion disks) and laboratory laser plasmas, including description of the 
individual filaments in a quasi-magnetostatic turbulence.
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