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Abstract

An analytical description of a new broad class of the cylindrically
symmetric magnetostatic structures (filaments) in a collisionless relativistic
multicomponent plasma is given by means of the method of invariants of
particle motion (PRL 104 (2010) 215002; Physics-Uspekhi 59 (2016) 1165).

Namely, the Vlasov-Maxwell equations are reduced to a nonlinear
damped oscillator equation, with an explicit form of an effective nonlinear
potential, for the particle distribution functions (PDFs) with a polynomial-
exponential dependence on a longitudinal momentum. The particle
distributions may be essentially different from the Maxwellian ones and
vary along the radial direction self-consistently with the profile of azimuthal
magnetic field of the filament.

We present a classification of possible radial profiles of a current
density in these filaments, including zero, finite and infinite values of the
total current as well as various spatial scales, both thin and thick with
respect to a typical particle gyroradius.



3D Weibel instability in e -e+ plasma
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Magnetic field energy density for values of 15% of the maximum energy density.
Results are shown slightly before saturation and in the quasi-static stage (g5~ 1%).

Fonseca, Silva et al (2003).



Collision of laser collisionless plasma jets
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Nonlinear evolution

Quasineutrality

Magnetic energy can approach equipartition
Current filaments merge due to Ampere force
Spatial scale increases

Slow magnetic field decay

Metastable configurations

Equal treatment of relativistic and non-relativistic plasma
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Introduction

An example of magnetic field generation in a collisionless shock modelling.
Frederico Fiuza, Lawrence Livermore National Laboratory
(https://www.alcf.anl.gov/projects/particle-acceleration-shocks-
astrophysics-laboratory-silico and http://arxiv.org/pdf/1210.2643.pdf).

Examples of solutions with fixed energy distribution of
particles: Bennett, 1934; Harris, 1962; Vasko, 2013.

For Bennett pinch with maxwellian PDF the

momentum distribution is universal in space: Current density j and

fa (I‘, p) _ Na ($)fa (p) magnetic field B

depend on radius


https://www.alcf.anl.gov/projects/particle-acceleration-shocks-astrophysics-laboratory-silico
http://arxiv.org/pdf/1210.2643.pdf

Maxwell-Vlasov equations
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Can there be cylindrical magnetostatic analytic solutions
having arbitrary dependence on particle energy?

V.Ju. Martyanov, VI.V. Kocharovsky, V.V. Kocharovsky, JETP 107, 1049 (2008);
Radiophys. Quant. Electr. 52, n. 2, p. 79 (2009); Astronomy Lett. 36, 396 (2010);
Phys. Rev. Lett. 104, 215002 (2010).

Assuming magnetic field is stronger than electric field, we work in that frame of reference
where electric field vanishes (Gedalin et al., Journal of plasma physics 77, n.2 (2011)):

Zea/fa d’p =0



Integrals of particle motion
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Any PDF expressed as a function of integrals of particle motion
satisfies the Vlasov equation (for a given sort of particles):

f:f(ngy)

Distribution functions must be nonnegative and give finite particle

density:
f=0
/ fd’p < oo



Grad-Shafranov equation and polynomial-exponential PDF
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1D harmonic solution of the nonlinear problem (d=2)
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Polynomial PDF with d = 2: Bessel solution

B(p Approximation as superposition of finite
number of planar harmonic perturbations:

Stability condition is satisfied only up to a certain radius
where the plasma is magnetized enough. Beyond this
radius, particular properties of how the current filament is
embedded in the background plasma should be considered.




Grad-Shafranov potential and effective viscous damping
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Classification of solutions
Vector potential A as a function of cylindrical radius can have

1) an infinite number of oscillations near a local minimum of potential
U(A) (Bessel-like solution);

I1) no oscillations and goes to infinity, admitting nonzero filament's net
current, as in Bennett pinch. Current density can have the same sign
throughout the filament and the particle densities can vanish at infinity;

I11) a finite number of oscillations (or no oscillations) and stops at a local
maximum of the Grad-Shafranov potential, meaning the filament's net
current is zero.



Shielded current filament (Taylor order d=3)
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Single current filament (Taylor order d = -1)




Bennett pinch (PDF of exponential type)
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Bennett pinch

The first example covers the analytical generalization of
the known Bennett pinch to the case of arbitrary energy
distributions, which corresponds to the exponential depen-
dence of PDFs on the generalized momentum: f, =
Fuo(p)exp ({,P./myc). In this case, the Grad-Shafranov
equation takes the form

d’A. N 1d4, W, . A,
JE—— —_— = —— X
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where Ay = m,c?/{,e, (assuming this quantity to be the same
for all kinds of current-carrying particles o), while W} is
positive and expressed as an integral including an arbitrary
function Fy,(p). The family of solutions satisfying the

(71)

boundary condition d4./dp[, , =0 is described by the
formula (cf. Refs [1, 179])
2.2
4. = —24g1n Y2 A KT (72)
4k Ay

and 1s parametrized by a positive quantity «, the inverse of the
filament radius. If, for definiteness, 4y > 0, k is positive, too.

The corresponding magnetic field

B 440x%p
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(73)

unrelated to the energy distribution of particles, F, is

maximum at p = x !, and amounts to 2xA4,. The current

density is given by the expression (Fig. 3)
2cAok? _

n(l + x2p2)*’

J: = ( 74)

its simple integration gives a total current value of 2cA4,
independent of x and, therefore, of the filament radius.

Owing to the exponential dependence of the PDF on the
projection of the generalized momentum, distributions of any
kind of particles over momentum at all points of space are
similar and differ only in the momentum-independent factor.
Therefore, the shape of the particle concentration profile
coincides with that of the current density profile: N, =
Ny max/ (1 + szz)z_ The integral of N, over plane xy gives
the number of particles per unit pinch length and is equal to
nk 2N, max» Which once again confirms the possibility of
conventionally regarding quantity x ~! as the radius of the
current filament being considered. This radius can be either
longer or shorter than the particles’ characteristic gyroradius
depending on their energy distribution.
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Figure 3. Typical profile of the potential of the Grad—Shafranov equation
(71) and the dependences of 4., B,, and j. on the cylindrical coordinate p
for the solutions given by formulas (72)—(74) in the form of the Bennett
pinch. Hereinafter, the bold line in the Grad—Shafranov potential plots
indicates the region of varying A. values.



Examples of double-scale and tubular filaments

One more important class of current filaments is repre-
sented by solutions of the Grad-Shafranov equation for
distribution functions in the form of the sum of two
components that exhibit exponential dependence on the
generalized momentum P. with different exponents whose
ratio equals w and may have arbitrary dependences on
particle energy:

d2A:+ldAz = —mex A ——WZ ex A: (77)
P dp N AO p AO WAO P WAO .

dp?
Here, as in the case of the generalized Bennett pinch, 4y =
myc?/{,e,, and constants W, and W, are given by integrals of

energy distributions. The most interesting case 1s that of
exponents having identical signs, which allows us to consider
Ay and w, for certainty, as being positive. Moreover, it can be
assumed, without a loss of generality, that w < 1, and one of
the two exponents (second) changes faster than the other.

If W, >0 and W, >0, while w <1, a double-scale
solution is possible, as exemplified for w = 0.1 in Fig. 6a. If
Wy > 0, W, < 0, the solution will take the shape of a ‘tubular’
current filament in which a current density maximum is
shifted from the cylindrical symmetry axis to a certain
cylinder around it (Fig. 6b).

The total current in these two solutions differs from 2cA,
obtained upon direct generalization of the Bennett pinch,
which accounts for the different asymptotic behavior of
solutions far from the axis, despite the fact that only one of
the two components on the right-hand side of Eqn (77) is
essential at large p, and the form of the equation coincides
with that of equation (71) having solutions in the form of
Bennett type pinches. The analysis of the asymptotic behavior
of such fragments at large p shows that the magnetic field
decreases in inverse proportion to the distance from the axis.



Generalized relativistic Bennett pinch
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| = (1-g)cA,. If g > 1, the latter is
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Shielded current filaments (Taylor order d=3, d=4)
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Other interesting classes of solutions emerge when using
distribution functions of particles with a higher order of
polynomial expansion in terms of the generalized momen-
tum P.. Then, the Grad—Shafranov potential as a function of
the vector potential component 4. is a polynomial of the same
order, and the spatial structure of the fragment can be rather
complicated. For example, if the range of A. variations is
bounded and 4. monotonically, without oscillations, tends
toward a certain constant, while p tends to infinity, the
filament it describes is the central current surrounded by an
equal and opposite current, such that the total current is zero
(with more than one change in the current density sign being
possible). Figure 5a presents an example of the solution of
such a form for the Grad-Shafranov equation with the
potential proportional to 4> — 4yA? at a certain constant Ay
value. This solution corresponds to such a set of PDF
parameters at which the representative point of 4. as a
variable of equation (70) tends to a local maximum in the
Grad-Shafranov potential as p — oo. In this case, the only
nonzero magnetic field component B, has one sign every-
where, and the current density changes the sign only once as
the coordinate p grows.

If the Grad-Shafranov potential takes the form of a
fourth-order polynomial, e.g., U(A4.) oc A* — A2A4% with a
certain constant Ag, the solutions become possible with
more than one change of current density direction and a few
changes of the component B, sign. The solution with B,
changing the sign only once and the current density being two
cylindrical countercurrents embedded within each other is
presented in Fig. 5b. The analysis of the asymptotic behavior
of filaments of this type at large p reveals their exponential
decrease.
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Figure 7. Two-dimensionally inhomogeneous current configurations. The
shades of gray characterize the current density modulus (white color
denotes zero density), and arrows indicate magnetic field magnitude and
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direction. The scale on each axis is counted in & ~! units.




Figure 8. Two-dimensionally inhomogeneous configurations described by
potential (81) at different values of the inhomogeneity parameter u. The
shades of gray show current density (white color denotes zero density), and
arrows indicate magnetic field strength and direction. The scale on each

axis is counted in x ~! units.
Fadeev solution

A. = —2A4pIn (\/1 + p? cosh (kx) + pcos (h:y))

242
Wy |-

Here, the free parameter u is responsible for the degree of
structural inhomogeneity along the y-coordinate. At u =0,
we obtain generalization of the Harris sheet for the case of
arbitrary energy distribution of particles, which is discussed in
detail in Section 3.2.1. Another free parameter x ~! assigns the
scale of magnetic field changes on the x- and y-axes. The
equality of these parameters is essential.

+2Ap1n (rc (81)

The current density in solution (81) is given by the formula

c CA{)Kz

B 21 (/1 + p? cosh(kx) + pcos (r«cy))2 ’
(82)

indicating that a self-consistent current structure at large
enough u actually consists of a chain of generalized Bennett
pinches arranged with a period of 2n/x and carrying 2cA,
current each. The magnetic field and current density entering
solution (81) at two different values of the imhomogeneity
parameter u are shown in Fig. 8.



Classification of the current filaments

For the cylindrically symmetrical filaments with a purely azimuthal
magnetic field, the method of particle motion invariants admits only
the following three qualitatively different types of the self-consistent
structures.

l. The first type assumes an unlimited value of the vector
potential A,. This implies that the A, is a monotonic function and the
azimuthal component of the magnetic field is of the same sign for all
values of the radial variable p. The current density may be sign-
changing, although the current through any circular area
perpendicular to z with a center on z has the same sign. A total
current can be either finite or zero. The plasma can be localized near
axis z, with its density exponentially vanishing with an increasing
distance from the axis.



. In the second type, the range of values of A, is limited and its
derivative with respect to p (the azimuthal component of magnetic field)
changes sign a finite number of times. So, the “motion” of the oscillator
(i.e., A,) in the Grad-Shafranov potential starts at p = 0 with sliding down
the slope of the well and ends on a local summit or, in a degenerate case,
at the point where the first two derivatives of U(A,) with respect to A,
vanish.

A bottom of the potential well cannot be reached in an infinitely slow
monotonic manner since a general solution to the oscillator equation with
a viscous friction and a zero right-hand side is A, = ¢, + ¢,'In p. So, even for
a completely flat bottom the motion is unlimited and the “friction” cannot
stop the motion at a finite distance. Between the beginning and the end of
the motion, there could be a few reflections from the potential walls that
are higher than the final summit. The total current is absent, the magnetic
field declines faster than 1/p with the increase of p. In the general case,
the summit (hilltop) on the vector potential's profile has a quadratic form.
Hence, the magnetic field and the current density decline exponentially.



l1l. In the third type, the range of values of A, is limited, the
A, oscillates infinitely many times near the well's bottom with the
increase of p. In a general case, as the amplitude of these
oscillations decreases, the profile of the well's bottom can be
approximated by a parabola, which yields a Bessel-type solution.
The amplitudes of oscillations of A,, the magnetic field and the
current density decrease as 1/p when p increases.

In the case when the series expansion of the Grad-
Shafranov potential near the bottom starts with a term higher
than quadratic, the infinitely many oscillations also exist, although
their period grows with p. The resulting current configuration
constitutes a finite or infinite collection of concentric current
cylinders, among which the ones on the outside have, as a rule, a

larger value of the total current and a lower current density than
the inside ones.



Conclusions

We investigate in detail several simplest cases of the exponential, sum of
two exponentials, quadratic, third- and fourth-order polynomial PDFs.

In the first case we find a generalization of the Bennett pinch for arbitrary
energy distribution of particles, which influences strongly the filament size as
compared to the Maxwellian distribution for a given value of total current. In the
third case we come to a current density profile with the radial oscillations
described by the Bessel function with a spatial scale which also depends strongly
on the energy distribution of particles.

In more complicated other cases we obtain well localized filaments with
zero or finite total current and show that there are possible solutions with one or
more changes of current density direction and a few changes of sign of the
azimuthal magnetic field.

Our analytical results may be applied to the interpretation of the
numerical simulations of the collisionless shock waves and to the analysis of
various long-lived magnetic structures in the astrophysical plasmas (jets, winds,
accretion disks) and laboratory laser plasmas, including description of the
individual filaments in a quasi-magnetostatic turbulence.



Construction of the theory of self-consistent configurations
of the magnetic field and currents in a collisionless plasma is
one of the most important problem in basic plasma physics,
affecting, among other things, realization of far-reaching
experiments with the so-called high-energy density laser
plasma based on modern superpower lasers and elucidation
of intriguing astrophysical phenomena (quasars, microqua-
sars, stellar and pulsar wind, cosmic gamma-ray bursts, etc.)
and events in near-space (shock waves and current sheets in
the Sun’s and planets’ magnetospheres) that are becoming
increasingly more observable using unique space vehicles and
telescopes.

diversity of
PDFs and spatial magnetic field configurations associated
with self-consistent current structures also appears to be
natural in the astrophysical plasma, including active areas of
the chromospheres and magnetic star coronas, current sheets
formed by the stellar wind, or during contacts between
magnetized plasma regions with different directions of the
magnetic field in double systems with accretion (accretion
disks and jets corresponding to neutron stars and black holes)

P roblems awaiting further research:

(1) How representative are distribution functions depend-
ing only on particle motion invariants compared with a
variety of distribution functions describing all stationary
self-consistent current structures? How adequately do the
first distributions represent qualitatively (physically) similar
current structures described by more general particle distribu-
tions?

(2) What self-consistent current structures are most (or
least) stable and what is the hierarchy of their instabilities?
For which particle distribution is the structure with a given
current density profile most stable?

(3) To what degree do the classes of stationary current
structures extend (or contract) under the effect of a magnetic
tfield imposed, for example, across the current sheet and/or
boundary conditions, e.g., in prescribing the input and output
particle flows at the borders of the current structure?

(4) Is there a possibility of quasi-adiabatic (slow) defor-
mation of current structures without their appreciable
destruction and, if yes, under which conditions does it
occur? Is it possible to macroscopically describe any current
structure deformation or their interaction with each other
without a detailed analysis of PDF evolution?

(5) How do interparticle collisions, quasi-stationary
electric fields, and higher-frequency electromagnetic fields
influence self-consistent current structures? When does this
influence result in their destruction or evolution of their
macroscopic parameters without destruction, even if with a
loss of energy content?



