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Overview

e Minimalist Model for CR (or SEP) transport: Fokker-Planck
Equation

Lacuna in Transport Description
What we know for sure
o ballistic propagation, t < t. (E)
o diffusive propagation, t > t. (E)

e What is between the two limits and for how long?
o “Telegraph” equation
o hyper-diffusive corrections (Chapman-Enskog)
e no specifics as to when to switch from t < t. to t> t,

Exact Solution of Fokker-Planck Equation

Simplified Propagator for pitch-angle averaged FP solution

Take Away
o 2017PhRvD..95b3007M, arXiv:1703.02554
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CR Transport Model: Fokker-Planck Equation

CR transport driven by pitch- angle scattering, gyro-phase averaged

of of 0 of
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z -along B; p -cosine of CR pitch angle

@ energy E enters as a parameter, but gain/loss terms a(E) 9f /OE can be

removed by E — E' = [a~'dE — t
D (p) is derived from a power index of the scattering turbulence, gq

for a power spectrum P oc k=9 (k is the wave number) D (z) o |p]7"

@ more complex, anisotropic spectra, such as Goldreich-Shridhar 1995 —

flat D (1) except pu =~ 0,£1

for review of yet more complex, fractional kinetics based transport see,
e.g., Metzler & Klafter 2000, Zeleny & Milovanov 2004, Zaslavsky 2005
(book)

important case: g=1 — D = D(E)



FP: Of + vuoif = 0, (1 — ,uz) Do, f : diffusive approx.

e need evolution equation for

[

1
o (%) = (F (£, ) EQ/f(u, t.x) dp.
|

e answer deems well known (e.g., Parker 65, Jokipii 66): average and

expand in 1/D:

of v 2\ O of v o
E = Ea <(1 % ) a,u> (eXaCt eq.), % ~ 5D aX

@ equation for fy
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FP:0:f + vuosf =0, (1 — ,uz) Do, f diff.: limitation

o Critical step: Of /Ot is neglected compared to vOf/0x
o Justification: for Dt > 1, f (u) = f — fy decays oc e~ Pt

However, strong inhomogeneity — sharp anisotropy (real problem!)

Cannot handle fundamental (Green’s function) solution

Example

CR Transport Modeling
o K~ Vv2/D(E), galactic CR k ~ 10%cm?/s, k o E®, a ~ 0.3 — 0.6
o CR mfp Acr ~ 1lpc for a few 10 GeV particles
o Near the “knee” at ~ 3-1015GeV, m.f.p. ~ 100 pc




Lacuna in CR Transport Model

e nearby sources of CRs are likely within this range of a few 100’s pc

e cannot be studied within diffusive approach at the knee energy and
beyond
e circumstantial evidence:

o Sharp anisotropy in CR arrival directions, ~ 10° (Milagro data,
Abdo et al 2008)

e “nondiffusive transport” explanation: MM, Diamond, Drury &
Sagdeev 2010

Otf + vpdxf =0, (1 - ,u2) Do, f

e approach this difficult part of parameter space (E) and CR
propagation history from the other end: scatter-free regime:
t<1/D(E)




Fokker-Planck 0,f + vud.f = 0, (1 — uz) Do, f

@ discard collision term

of  of

— +vpu—=0
ot + Hox
@ solution
f(Xaﬂa t) = f(X - Vutwuao)
e consider a point source with initially isotropic distribution:

f(x,11,0) = (1/2) 3 (x) © (1 — 1i?)

0 and © - Dirac’s delta and Heaviside unit step functions

<x2> = v?t?/3: free escape with mean square velocity v/v/3

(F (1, x, 1)) = fo (x, t) = (2vt) 1 © (1 — x*/V21?)

expanding 'box’ of decreasing height, oc 1/t



Fokker-Planck 0,f + vud,f = 0, (1 — uz) Do, f

e adopted D (u) = const (q = 1) as both interesting and important
case
o > UNITS: D=v=1, (Dt —>t, 2x—x)

OF L 900 2 0f
ot " Foax Tou VM Bu

@ contains no parameters: to correctly describe transition from
ballistic to diffusive transport at times t ~ 1 (~ te), we need
exact solution

3 —3x%/2t
ﬁe x>/ s t >t

{(21&)‘1 O(1-x%/t?), t<t



FP: past/recent attempts at bridging the gap

Otf + vdxf =0, (1 — ,u2) DO, f — Telegraph Equation

o In diff. derivation, retain 0f /Ot in addition to Of /Ox corrections

— 0%fy/0t?and higher derivative terms in p-a averaged equation,
Axford 1965, Earl 1973++, Pauls, Burger & Bieber,1993, Schwadron & Gombosi,
1994, Litvinenko & Schlickeiser 2013...., Tautz+ 2016

e end up with and advocate Telegraph equation:

of; 0 0f 0?f;
0 0 0

ot ox"ox | oe
where 7~ 1/D, k ~ v?/D

e TE is inconsistent with Chapman-Enskog expansion

e does not conserve number of particles without adding singular,

d (x — Vt) components (non-existing in FP).... MM & Sagdeev 2015,
MM 2015

=0




Fokker-Planck 0,f + vud.f = 0, (1 — uz) Do, f

Analytic solution, step by step (ridiculously simple)

00 1
/ dx/ fdu/2 =1
—0o0 -1

@ organize the moments of f into the following matrix

O normalize f to unity

[e%9) 1
M;jj = <uixj> :/ dx/luixjfdu/Z

@ for any i,j > 0, multiplying FP eq. by u/x/ and integrating, obtain
a matrix equation for the moments M;;:

d
M+ i (1) My = jMisy joy 0 (7 = 1) Mi—2,



OeMyj + i (i +1) My = jMjs1 1 + 7 (0 = 1) M2,

evolution equation for M;; depends on a “higher” moment M, 1 _1

needs closure or truncation? Follow the footsteps of
hydrodynamics derivation?

surprisingly, it does not!

equation couples anti-diagonal elements from two closest
nonadjacent anti-diagonals

set of moments M;; (t) can be subsequently resolved to any order
n=1++y

Indeed, as Mgy = 1, and My, = M,; =0 for any i <0, k>0



atM,'j - I(I - 1) M,'j :jMi+1,j—1 =+ I(I — 1) M,‘_z,j

1 x)y ) (XP)
(W () ()
M=| W wx) 7 '
) 7 '
/ .

e matrix elements can be subsequently found on each anti-diagonal
working as shown by arrows

e first two moments on the uppermost antidiagonal are
o Mig (t) = (u) = (u)gexp(—2t) and

Mor = (x) = (x)g + (i)o [1 — exp (—21)] /2
@ higher moments can be obtained inductively



General Solution for the moments

. t i ’
Mlj (t) _ Mlj (0) e—l(l+1)t _1_/; el(l+1)(t —t)

X [jMf+1J,1 (t/) + i(f — 1) M,',zyj (tl)] dt’
e all higher moments can be obtained in form of series in tke™",
where k and n are integral numbers
e set of moments on the third anti-diagonal, My, Mi1, Moz (known
since 1922, G.I. Taylor):
1 1

Mo = =, My =
20 3’ 11 6

1
(1—e™), Mo = Mo (0)+ % —5 (1—e7?)

o My = <x2> x t? (t < 1, ballistic propagation , <x2> o t (diffusive
propagation )

e for simplicity, assume initial f (x, ¢, 0) symmetric in x and p

o this eliminates all odd moments at t =0

o sufficient for the fundamental solution: My (0) = <X2>0 =0



Higher moments and moment generating function

@ however, just a few moments do not yield accurate solution
e critical to sum up infinite series, but they grow (!)

1 _o0t  Ot+2 o 12t

Mog = ————
08 = 5045750 253125

43 t
5t 11 5625 © | 506250

567 T 11007 27783

( 2 11t 59 )eﬁt <14 858 , 151042 18509371)

e, 35,4 245 3554, 281183 123403

t
27 27 135 6075 * 3375

xe

e For any t, leading terms can be identified and summed up, using a
general expression for moment generating function

f(t) = /OO o (x, £) eMdx — Z(;n)lmogn (t)
. 2 (2n)]



Summing up the moments

e need to sum for arbitrary At (to capture sharp fronts). First,
separately for t < 1

1 t2 2
A(t) = Fsinh () + 5 [2 cosh (At) + ()\t — )\t> sinh (/\t)]
where t' =t — t2/3 + ...
@ t > 1 - similar result, can be unified with t < 1 case
e after taking inverse Fourier transform

1 .
/ e™f_i () dk

o

fo (x,t) ~ 41y [erf (XZY) —erf <X;y>]

o t < 1, fronts at, +y, y ~ t, thickness A =~ 2t%/3/5.
o After proceeding through the transdiffusive phase, t ~ 1
oy~ (11t/6)"* and A ~ (2t/3)/? for t > 1

fo(x,t) =




Universal Propagator f (x, t) = % [erf (%) — erf (Ty)}

o the same form for all 0 < t < 00
o the only difference in y (t), and A(t) for t < 1and t > 1

@ suggests determination of y and A from ezact relations:

My :/xzfo(x, t)dx, My :/x4f0(x, t) dx




Comparison with ballistic, diffusive, and numerical

fo(x,t) fo(x,t)
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Preliminary qualitative comparison with observations
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Conclusions

@ Fokker-Planck equation, commonly used for describing CR and other
transport phenomena, is solved exactly

@ The overall CR propagation can be categorized into three phases:
ballistic (t < 1), transdiffusive (¢t ~ 1) and diffusive (¢ > 1), (time in
units of collision time t.).

@ ballistic phase: source expands as a “box” of size Ax x /(x2) o t with
“walls” at x = +y (t) ~ £t of the width of each wall, A o t2.

o transdiffusive phase: box’s walls thickened to the box size A ~ Ax ~ y ,
slower expansion

o diffusion phase: Ax ~ A  /t, the walls are completely smeared out, as
y o t/* so y < A.

@ the conventional diffusion approximation can be safely applied but, only
after 5-7 collision times, depending on the accuracy requirements

@ a popular telegraph approach, originally intended to cover also the earlier
propagation phases at t < 1, is inconsistent with the exact FP solution

@ no signatures of extended (sub) super-diffusive propagation regimes are
present in the exact FP solution for D (u) = const
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