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Overview

Minimalist Model for CR (or SEP) transport: Fokker-Planck

Equation

Lacuna in Transport Description

What we know for sure

ballistic propagation, t � tc (E )
di�usive propagation, t � tc (E )

What is between the two limits and for how long?

�Telegraph� equation
hyper-di�usive corrections (Chapman-Enskog)
no speci�cs as to when to switch from t � tc to t � tc

Exact Solution of Fokker-Planck Equation

Simpli�ed Propagator for pitch-angle averaged FP solution

Take Away
2017PhRvD..95b3007M, arXiv:1703.02554
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CR Transport Model: Fokker-Planck Equation

CR transport driven by pitch- angle scattering, gyro-phase averaged

∂f

∂t
+ vµ

∂f

∂x
=
∂

∂µ

(
1− µ2

)
D (E , µ)

∂f

∂µ

z -along B; µ -cosine of CR pitch angle

energy E enters as a parameter, but gain/loss terms a (E ) ∂f /∂E can be
removed by E → E ′ =

∫
a−1dE − t

D (µ) is derived from a power index of the scattering turbulence, q

for a power spectrum P ∝ k−q (k is the wave number) D (µ) ∝ |µ|q−1

more complex, anisotropic spectra, such as Goldreich-Shridhar 1995 →
�at D (µ) except µ ≈ 0,±1
for review of yet more complex, fractional kinetics based transport see,
e.g., Metzler & Klafter 2000, Zeleny & Milovanov 2004, Zaslavsky 2005
(book)

important case: q = 1 → D = D (E )
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FP: ∂tf + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf : di�usive approx.

need evolution equation for

f0 (t, x) ≡ 〈f (t, x , µ)〉 ≡ 1

2

1∫
−1

f (µ, t, x) dµ.

answer deems well known (e.g., Parker 65, Jokipii 66): average and

expand in 1/D:

∂f0
∂t

= −v

2

∂

∂x

〈(
1− µ2

) ∂f
∂µ

〉
(exact eq.),

∂f

∂µ
' − v

2D

∂f0
∂x

equation for f0

∂f0
∂t

=
∂

∂x
κ
∂f0
∂x

, κ =
v2

4

〈
1− µ2

D

〉
=

1

6

v2

D (E )
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FP:∂tf + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf di�.: limitation

Critical step: ∂f /∂t is neglected compared to v∂f /∂x

Justi�cation: for Dt & 1, f̃ (µ) = f − f0 decays ∝ e−λ1Dt

However, strong inhomogeneity → sharp anisotropy (real problem!)

Cannot handle fundamental (Green's function) solution

Example

CR Transport Modeling

κ ∼ v2/D (E ) , galactic CR κ ∼ 10
28cm2/s, κ ∝ Eα, α ' 0.3− 0.6

CR mfp λCR ∼ 1pc for a few 10 GeV particles

Near the �knee� at ' 3 · 1015GeV, m.f.p. ∼ 100 pc
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Lacuna in CR Transport Model

nearby sources of CRs are likely within this range of a few 100's pc

cannot be studied within di�usive approach at the knee energy and

beyond

circumstantial evidence:

Sharp anisotropy in CR arrival directions, ∼ 10
◦ (Milagro data,

Abdo et al 2008)
�nondi�usive transport� explanation: MM, Diamond, Drury &
Sagdeev 2010

∂t f + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf

approach this di�cult part of parameter space (E ) and CR

propagation history from the other end: scatter-free regime:

t � 1/D (E )



Fokker-Planck ∂tf + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf

discard collision term

∂f

∂t
+ vµ

∂f

∂x
= 0

solution

f (x , µ, t) = f (x − vµt, µ, 0)

consider a point source with initially isotropic distribution:

f (x , µ, 0) = (1/2) δ (x) Θ
(
1− µ2

)
δ and Θ - Dirac's delta and Heaviside unit step functions〈
x2
〉

= v2t2/3: free escape with mean square velocity v/
√
3

〈f (µ, x , t)〉 = f0 (x , t) = (2vt)−1 Θ
(
1− x2/v2t2

)
expanding 'box' of decreasing height, ∝ 1/t



Fokker-Planck ∂tf + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf

adopted D (µ) = const (q = 1) as both interesting and important

case

→ UNITS : D = v = 1, (Dt → t, D
v x → x)

∂f

∂t
+ µ

∂f

∂x
=
∂

∂µ

(
1− µ2

) ∂f
∂µ

contains no parameters: to correctly describe transition from

ballistic to di�usive transport at times t ∼ 1 (∼ tcol), we need
exact solution

f =

{
(2t)−1 Θ

(
1− x2/t2

)
, t � tc√

3

2πt e
−3x2/2t , t � tc
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FP: past/recent attempts at bridging the gap

∂t f + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf → Telegraph Equation

In di�. derivation, retain ∂f /∂t in addition to ∂f /∂x corrections
→ ∂2f0/∂t

2and higher derivative terms in p-a averaged equation,
Axford 1965, Earl 1973++, Pauls, Burger & Bieber,1993, Schwadron & Gombosi,

1994, Litvinenko & Schlickeiser 2013...., Tautz+ 2016

end up with and advocate Telegraph equation:

∂f0
∂t
− ∂

∂x
κ
∂f0
∂x

+ τ
∂2f0
∂t2

= 0

where τ ∼ 1/D, κ ∼ v2/D

TE is inconsistent with Chapman-Enskog expansion

does not conserve number of particles without adding singular,
δ (x − Vt) components (non-existing in FP).... MM & Sagdeev 2015,

MM 2015
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Fokker-Planck ∂tf + vµ∂x f = ∂µ
(
1− µ2

)
D∂µf

Analytic solution, step by step (ridiculously simple)

1 normalize f to unity ∫ ∞
−∞

dx

∫
1

−1
fdµ/2 = 1

2 organize the moments of f into the following matrix

Mij =
〈
µix j

〉
=

∫ ∞
−∞

dx

∫
1

−1
µix j fdµ/2

3 for any i , j ≥ 0, multiplying FP eq. by µix j and integrating, obtain

a matrix equation for the moments Mij :

d

dt
Mij + i (i + 1)Mij = jMi+1,j−1 + i (i − 1)Mi−2,j



∂tMij + i (i + 1)Mij = jMi+1,j−1 + i (i − 1)Mi−2,j

evolution equation for Mij depends on a �higher� moment Mi+1,j−1

needs closure or truncation? Follow the footsteps of

hydrodynamics derivation?

surprisingly, it does not!

equation couples anti-diagonal elements from two closest

nonadjacent anti-diagonals

set of moments Mij (t) can be subsequently resolved to any order

n = i + j

Indeed, as M00 = 1, and Mik = Mki = 0 for any i < 0, k ≥ 0
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∂tMij + i (i + 1)Mij = jMi+1,j−1 + i (i − 1)Mi−2,j

M =



1 〈x〉
〈
x2
〉 〈

x3
〉

〈µ〉 〈µx〉
〈
µx2

〉
↗〈

µ2
〉 〈

µ2x
〉

↗ . .
.〈

µ3
〉

↗ . .
.

↗ . .
.


matrix elements can be subsequently found on each anti-diagonal

working as shown by arrows

�rst two moments on the uppermost antidiagonal are

M10 (t) = 〈µ〉 = 〈µ〉
0

exp (−2t) and

M01 = 〈x〉 = 〈x〉
0

+ 〈µ〉
0

[1− exp (−2t)] /2

higher moments can be obtained inductively
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General Solution for the moments

Mij (t) = Mij (0) e−i(i+1)t +

∫ t

0

e i(i+1)(t′−t)

×
[
jMi+1,j−1

(
t ′
)

+ i (i − 1)Mi−2,j
(
t ′
)]

dt ′

all higher moments can be obtained in form of series in tke−nt ,
where k and n are integral numbers

set of moments on the third anti-diagonal, M20, M11, M02 (known

since 1922, G.I. Taylor):

M20 =
1

3
, M11 =

1

6

(
1− e−2t

)
, M02 = M02 (0) +

t

3
− 1

6

(
1− e−2t

)
M02 ≡

〈
x2
〉
∝ t2 (t � 1, ballistic propagation ,

〈
x2
〉
∝ t (di�usive

propagation)

for simplicity, assume initial f (x , µ, 0) symmetric in x and µ
this eliminates all odd moments at t = 0

su�cient for the fundamental solution: M02 (0) =
〈
x2
〉
0

= 0
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Higher moments and moment generating function

however, just a few moments do not yield accurate solution

critical to sum up in�nite series, but they grow (!)

M08 =
1

6945750
e−20t − 5t + 2

253125
e−12t+

(
t2

567
+

11t

11907
− 59

27783

)
e−6t −

(
14

25
t3 +

858

125
t2 +

151042

5625
t +

18509371

506250

)
×e−2t +

35

27
t4 − 224

27
t3 +

3554

135
t2 − 281183

6075
t +

123403

3375

For any t, leading terms can be identi�ed and summed up, using a

general expression for moment generating function

fλ (t) =

∫ ∞
−∞

f0 (x , t) eλxdx =
∞∑
n=0

λ2n

(2n)!
M0,2n (t)



Summing up the moments

need to sum for arbitrary λt (to capture sharp fronts). First,

separately for t < 1

fλ (t) =
1

λt ′
sinh

(
λt ′
)

+
t2

45

[
2 cosh (λt) +

(
λt − 2

λt

)
sinh (λt)

]
where t ′ = t − t2/3 + ...

t > 1 - similar result, can be uni�ed with t < 1 case

after taking inverse Fourier transform

f0 (x , t) =
1

2π

∫
e ikx f−ik (t) dk

f0 (x , t) ≈ 1

4y

[
erf

(
x + y

∆

)
− erf

(
x − y

∆

)]
t � 1, fronts at, ±y , y ≈ t, thickness ∆ ≈ 2t2/3

√
5.

After proceeding through the transdi�usive phase, t ∼ 1

y ≈ (11t/6)1/4 and ∆ ≈ (2t/3)1/2 for t � 1



Universal Propagator f0 (x , t) ≈ 1

4y

[
erf
(
x+y

∆

)
− erf

(
x−y

∆

)]
the same form for all 0 < t <∞
the only di�erence in y (t) , and ∆ (t) for t � 1 and t � 1

suggests determination of y and ∆ from exact relations:

M2 =

∫
x2f0 (x , t) dx , M4 =

∫
x4f0 (x , t) dx

y =

[
45

2

(
M2

2 −
1

3
M4

)]1/4
, ∆ =

√
2M2 −

√
10

√
M2

2
− 1

3
M4

M2 =
t

3
− 1

6

(
1− e−2t

)
, M4 =

1

270
e−6t − t + 2

5
e−2t +

1

3
t2 − 26

45
t +

107

270
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Comparison with ballistic, di�usive, and numerical
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Preliminary qualitative comparison with observations
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Haggerty and Roelof, 2002
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Conclusions

Fokker-Planck equation, commonly used for describing CR and other
transport phenomena, is solved exactly

The overall CR propagation can be categorized into three phases:
ballistic (t < 1), transdi�usive (t ∼ 1) and di�usive (t � 1), (time in
units of collision time tc).

ballistic phase: source expands as a �box� of size ∆x ∝
√
〈x2〉 ∝ t with

�walls� at x = ±y (t) ≈ ±t of the width of each wall, ∆ ∝ t2.

transdi�usive phase: box's walls thickened to the box size ∆ ∼ ∆x ∼ y ,
slower expansion

di�usion phase: ∆x ∼ ∆ ∝
√
t, the walls are completely smeared out, as

y ∝ t1/4, so y � ∆.

the conventional di�usion approximation can be safely applied but, only
after 5-7 collision times, depending on the accuracy requirements

a popular telegraph approach, originally intended to cover also the earlier
propagation phases at t . 1, is inconsistent with the exact FP solution

no signatures of extended (sub) super-di�usive propagation regimes are
present in the exact FP solution for D (µ) = const
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