# Anomalies in Galactic Cosmic Rays: Time for Exotic Scenarios?<sup>1</sup>

Mikhail Malkov

Ackn.: Patrick Diamond (UCSD), Roald Sagdeev (UMD) Supported by NASA Astrophysics Theory Program under grant Nos. NNX14AH36G and 80NSSC17K0255



<sup>1</sup>HEPRO 6, Moscow Sep 11-15, 2017

#### Cosmic rays: role in particle physics

From R. Battiston, 02

| Table 1. | Discovery | $\mathbf{of}$ | elementary | particl | es |
|----------|-----------|---------------|------------|---------|----|
|----------|-----------|---------------|------------|---------|----|

| Particle         | Year                         | Discoverer (Nobel Prize)     | Method                |  |
|------------------|------------------------------|------------------------------|-----------------------|--|
| $e^-$            | 1897                         | Thomson (1906)               | Discharges in gases   |  |
| p                | 1919                         | Rutherford                   | Natural radioactivity |  |
| n                | 1932                         | Chadwik (1935)               | Natural radioactivity |  |
| $e^+$            | 1933                         | Anderson $(1936)$            | Cosmic Rays           |  |
| $\mu^{\pm}$      | 1937                         | Neddermeyer, Anderson        | Cosmic Rays           |  |
| $\pi^{\pm}$      | 1947                         | Powell (1950) , Occhialini   | Cosmic Rays           |  |
| $K^{\pm}$        | 1949                         | Powell (1950)                | Cosmic Rays           |  |
| $\pi^0$          | 1949                         | Bjorklund                    | Accelerator           |  |
| $K^0$            | 1951                         | Armenteros                   | Cosmic Rays           |  |
| $\Lambda^{0}$    | 1951                         | Armenteros                   | Cosmic Rays           |  |
| $\varDelta$      | 1932                         | Anderson                     | Cosmic Rays           |  |
| $\Xi^{-}$        | 1932                         | Armenteros                   | Cosmic Rays           |  |
| $\Sigma^{\pm}$   | 1953                         | Bonetti                      | Cosmic Rays           |  |
| $p^-$            | 1955                         | Chamberlain, Segre' $(1959)$ | Accelerators          |  |
| anything else    | $1955 \Longrightarrow today$ | various groups               | Accelerators          |  |
| $m_{\nu} \neq 0$ | 2000                         | KAMIOKANDE                   | Cosmic rays           |  |

#### More than 100 years of cosmic ray research...



IceCube compilation of CR spectrum

- CR energy spectrum was long thought to be a featureless power law:
  - a hallmark of the underlying acceleration mechanism:
  - diffusive shock acceleration, DSA
- DSA rigidity (p/Z) spectra should be the same for all CR species
- Any change in power-law index interpreted as change of acceleration regime, source (galactic-extragalactic, etc.)

# An incredibly exciting time for this field...



Alpha Magnetic Spectrometer (AMS-02): Particle detector operating on the International Space Station

- Both energy (rigidity) spectrum and composition aspects of DSA scrutinized using modern instruments and proved not true in some instances
- Either we do not understand how DSA works and/or there are additional, probably exotic CR sources, such as dark matter decay or annihilation

## Outline

#### 1 Preliminary Information

- DSA The Diffusive Shock Acceleration
- DSA@SNR: Test Particle vs Nonlinear

#### 2 Disagreements with the standard DSA

- Anomalies in positron spectrum
- EXISTING explanations and their weaknesses
- NEW: Minimum assumptions, single source (SNR) scenario
  e<sup>±</sup> asymmetry of acceleration: Molecular Clumps
  Minimum in e<sup>+</sup>/(e<sup>+</sup> + e<sup>-</sup>): NL DSA
- 4 Conclusions: no room (almost) for DM/Pulsars contribution

# CR production mechanism: Diffusive Shock Acceleration (DSA)



#### flow velocity

- -Most shocks of interest are collisionless
- -Big old field in plasma physics

#### Problems:

- How to transfer momentum and energy from fast to slow gas envelopes if there are no binary collisions?
- waves...
- driven by particles whose distribution is almost certainly unstable...



# Essential DSA (aka Fermi-I process, E. Fermi, ~1950s)

#### Linear (TP) phase of acceleration

Downstream



- CR trapped between converging mirrors:  $p\Delta x \approx const$
- CR spectrum depends on shock compression, r:  $f \sim p^{-q}$ , q = 3r/(r-1),

$$r=q=4$$
 , Mach  $M\to\infty$ 

#### NL, with CR back-reaction



# CR acceleration in SNRs



SN 1006 and SN 1572 (Tycho), Reynolds 2008 and Warren et al 2005

- At least some of the galactic SNR are expected to produce CR up to  $10^{15} eV$  (knee energy)
- "Direct" detection is possible only as secondary emission
  - observed from radio to gamma
  - electron acceleration up to  $\sim 10^{14} eV$  is considered well established, synchrotron emission in x-ray band (Koyama et al 1995, Bamba et al 2003)
  - tentative evidence of proton acceleration from nearby molecular clouds:

 $pp \rightarrow \gamma$ 

Fermi-LAT, HESS, Agile, ... B SQC

## Positron Anomaly (excess)



- Positron excess (Accardo et al 2014)
- Observed by different instruments for several years
- Dramatically improved statistics by AMS-02 (published in 2014)



Things to note:

- Remarkable min at  $\approx 8 \text{ GeV}$
- Unprecedented accuracy in the range 1-100 GeV
- Saturation (slight decline?) trend beyond 200 GeV
- Eagerly awaiting next data release!

# Suggested explanations of positron excess

- focus on the rising branch of  $e^+/(e^+ + e^-)$
- invoke secondary  $e^+$  from CR pp with thermal gas

Problems:

- ${\circ}$  Tensions with  $\bar{\pmb{p}}:$  secondaries with differing spectra
- Poor fits, free parameters, no physics of 8 GeV upturn...

#### Alternative suggestions:

- Pulsars (lacking accurate acceleration models)
- Dark matter contribution ??

#### Stating the Obvious ....

- $\bullet~{\rm DSA@SNR'}$  predictive capability  $\gg {\rm Pulsar}$  or DM models
- $\rightarrow$  DM/P– only if the DSA@SNR fails

Upshot

• SNR contribution constrains DM/Pulsar contributions

#### Possible hints from p and $\bar{p}$



AMS-02:Aguilar+ 2016

| $particle \ property$ | charge | $\operatorname{mass}$ | secondary?            | pulsar?               |
|-----------------------|--------|-----------------------|-----------------------|-----------------------|
| p                     | +      | М                     | no                    | no                    |
| Ē                     | -      | М                     | yes                   | no                    |
| e <sup>+</sup>        | +      | m                     | $\operatorname{both}$ | yes                   |
| e <sup>-</sup>        | -      | m                     | no                    | $\operatorname{both}$ |

- account for  $e^+$  fraction by a single-source, a nearby SNR (contribution from similar sources not excluded)
- explain physics of decreasing and increasing branches, 8 GeV min
   → lends credence to high energy predictions
- $\circ\,$  understand  $\bar{p}/p$  and  $e^+/p$  flat spectra as intrinsic, not coincidental:
  - most likely  $\bar{p}$  and  $e^+$  accelerated similarly to protons, whenever injected BUT:
  - $\bar{p}/p = e^+/p \neq e^+/e^-$  Why so?
- plausible answer: acceleration/injection is charge-sign and mass/charge ratio dependent
- $\circ\,$  understand the physics of charge-sign and m/e selectivity



•  $\bar{p}$  fraction is flat on the rising  $e^+$ fraction branch E > 8 GeV



- $\,\circ\,$  Opposite trends in  $e^+/e^-$  and  $\bar{p}/p$  spectra at  $E<8~{\rm GeV}$
- Both are *fractions*, thus eliminating charge-sign independent aspects of propagation and acceleration (still, HS effects?)
- Striking similarity with NL DSA solution, assuming most of  $e^-$  are accelerated to  $p^{-4}$  (standard DSA)

- $\, \circ \,$  SNR shock propagates in "clumpy" molecular gas  $(n_{\rm H}\gtrsim 30 {\rm cm^{-3}}\,,$  filling factor  $f_V\sim 0.01)$
- High-energy protons are already accelerated to (at least)  $E\sim 10^{12}eV$  to make a strong impact on the shock structure (CR back reaction, NL shock modification)
  - Acceleration process thus transitioned into an efficient regime (in fact, required to, once  $E\gtrsim 1$  TeV,  $M\gtrsim 10-15$  and the fraction of accelerated protons  $\sim 10^{-4}-10^{-3})$

- The SNR is not too far away, possibly magnetically connected, thus making significant contribution to the local CR spectrum
- Other SNRs of this kind may or may not contribute

# Interaction of shock-acc'd CRs with gas clumps (MC)



• Shock-acc'd CRs form a precursor :  $\kappa$  - CR diff. coeff.,

$$L_p \sim \kappa/u_{sh}$$

- With some help from plasma textbooks...
- Maximum electric field due to e i collisions

$$E_{\max} \simeq rac{m_e}{e} u_{sh} 
u_{ei} rac{n_{CR}^0}{n_i}$$

• maximum ES potential inside

$$\frac{e\phi_{\max}}{m_pc^2} \sim \frac{a}{1pc} \frac{u_{sh}}{c} \frac{n_{CR}}{1cm^{-3}} \left(\frac{1eV}{T_e}\right)^{3/2}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

## Short digression into elementary plasma physics

• plasmas enforce almost "zero-tolerance" policy in regard to violation of their charge neutrality

#### Example

take  $1 \text{cm}^3$  of air ionize and separate p and e to distance r = 0.5 cm the resulting force

$$F = e^2 N^2 / r^2 \sim 10^{16} \; {
m lb}$$

As  $N \sim 10^{19}$ , I = 13.6 eV ionization energy only~ 100 Jouls

- similarly, <u>injection</u> of an external charge into plasma must lead to enormous electrostatic forces
- key words here are "separate" and "inject"
- need a powerful mechanism
- energetic CRs can do that

# **E** in MC: Injection/acceleration of $e^+$ and $\bar{\rho}$ into DSA

- electric field traps  $e^-$  and some  $\bar{p}$  inside MC
- ejects secondary  $e^+$  $\rightarrow$  charge-sign asymmetry



- $e^+$  are pre-accelerated in E to  $\lesssim 1$  GeV and readily injected into DSA
- at  $E_e \lesssim$  few GeV,  $e^+$  spectrum is dominated by the subshock compression ratio,  $r_s$ 
  - spectral index  $q = q_s \equiv 3r_s / (r_s 1)$  and the spectrum  $f_{e^+} \propto p^{-q_s}$ .
- at higher energies, particles perceive higher flow compression
  - PL-index inside the source  $q \rightarrow 3.5$

### Positron spectra cont'd



- $e^-$  are from the TP phase with  $p^{-4}$  source spectra (and other TP-SNRs)
- $\implies e^+/(e^- + e^+)$ -spectrum = p-spectrum in  $p^4f(p)$ customary normalization

- ratio  $e^+/(e^- + e^+)$  is de-propagated and probes directly into the positron accelerator!
- before **DM/pulsars** are declared responsible for the excess above the SNR (blue curve), the following (prosaic) aspects may be considered:
  - e<sup>+</sup> release from MC farther upstream (additional spectrum hardening)
  - ② synchrotron pile-up near the cut-off energy
  - 3 electrostatic breakdown of MC with enhanced  $e^+$  generation

### Antiprotons



• If most of  $\bar{p}$  and p come from the same source as  $e^+$  ( $\bar{p}$ generated in MCs ahead of SNR shock), the  $\bar{p}$  and  $e^+$ spectra should be the same as p at  $E \gtrsim 10$  GeV

- Similarly, p
  /p should be flat if p
  are co-injected (albeit as
  secondaries) into any SNR-DSA
  process
- Decline of  $\bar{p}$  at lower energies is consistent with electrostatic retention in MC
- Solar modulation may also contribute to  $p \bar{p}$  difference at lower energies
- Flat  $\bar{p}/p$  should continue up to  $p \sim p_{\max}$  and decline at  $p \gtrsim p_{\max}$  (secondaries with no acceleration)

### Conclusions

- secondary positrons produced in pp collisions inside MCs ahead of SNR shocks and expelled into shock precursor make a seed population for the DSA
- shock-accelerated positrons develop a concave spectrum, characteristic for the NL DSA.
- most of the negatively charged light secondaries  $(e^-)$ , and to some extent,  $\bar{p}$ , along with the primary electrons, remain inside MCs and make less contributions to the overall spectrum
- due to the NL subshock reduction, the MC remains unshocked, so that secondary  $\bar{p}$  and, in part, heavier nuclei accumulated in its interior largely evade shock acceleration
- the AMS-02 positron excess is not fully accounted for only in the range  $\sim 200 400$  GeV, BUT:
- physical phenomena to be included in the next-step model  $(e^+/e^-$  run-away breakdown, Syn. pile-up, etc.) are likely to suffice for a conventional explanation of the residual excess

#### Not every bump in the data is from DM



