The Jet Magnetic Flux

Elena Nokhrina
(Moscow Institute of Physics and Technology)

Moscow, Russia
September 13, 2017
What we need to produce jets?

- The ordered magnetic field
- The rotating black hole
- The accreting material

Blandford-Znajek process \rightarrow BH rotational energy extraction
What we need to produce jets?

- The ordered magnetic field
- The rotating black hole
- The accreting material

\[P_{tot} = \frac{\Omega^2}{\pi^2 c} \Psi_{tot}^2 \]
(Beskin 2010)

\[\Psi_{tot} \propto 50(\dot{M} r_g^2 c)^{1/2} \]
(Zamaninasab+ 2014)

Blandford-Znajek process \rightarrow BH rotational energy extraction
What we need to produce jets?

- The ordered magnetic field
- The rotating black hole
- The accreting material

Need estimates for:
- Magnetic field B
- Particle number density n

Blandford-Znajek process \rightarrow BH rotational energy extraction
Core-shift measurement

Equipartition assumption

Blandford-Konigl scalings

(Onanov 1998, see also Hirotani 2005, O’Sullivan & Gabuzda 2009, Nokhrina+ 2015)
Which physical parameters we can imply basing on the observations?

Core-shift effect:

Can be measured, for instance, in mas GHz

\[
v_1 > v_2, \quad v_2, \quad \tau = 1
\]
Which physical parameters we can imply basing on the observations?

Equipartition:

\[\sigma = \frac{B^2}{4\pi nmc^2\Gamma^2} \]

\[dn = k_e \gamma^{-p} d\gamma \]

\[\Sigma = \frac{\Gamma B^2 f(2)}{4\pi n_{rad} mc^2 \ln(\gamma_{\text{max}}/\gamma_{\text{min}})} \]
Which physical parameters we can imply basing on the observations?

Basing on the observations,

\[
\sigma = B_2 \frac{4\pi n m c^2 \Gamma_2 d}{\Sigma} = k \varepsilon \gamma - p d \gamma \Sigma = B_2 f(2) 4\pi nr^2 c^2 ln \frac{\Gamma}{\gamma_{max}} \gamma_{min}
\]

Beskin & Nokhrina 2006

Tchekhovskoy, McKinney & Narayan 2009
Which physical parameters we can imply basing on the observations?

Blandford-Konigl (1979) model $B \propto r^{-1}$ and $n \propto r^{-2}$

+ Gould (1979) model for the spherical self-absorbed sources
Which physical parameters we can imply basing on the observations?

Blandford-Konigl model + synchrotron self-absorbed source model provides

\[\nu_{\text{obs}} \propto r^{-1} \]

Sokolovsky+ 2011 supports it.
Core-shift measurement

Equipartition assumption

Blandford-Konigl scalings

\[B \sim 1G \]

\[n \sim 10^3 \text{ cm}^{-3} \]

(Lobanov 1998, see also Hirotani 2005, O’Sullivan & Gabuzda 2009, Nokhrina+ 2015)
Why non-equipartition is probably not valid?

- **Kellermann & Pauliny-Toth 1969**: the idea of the inverse Compton catastrophe and the limiting intrinsic brightness temperature
 \[T_{br} \approx 10^{12}\text{K} \]
- **Readhead 1994**: the equipartition brightness temperature
 \[T_{br} \approx 10^{11.5}\text{K} \]
- **However**: recent observations of radio cores by Gomez+ 2016, Kovalev+ 2016, Lisakov+ 2017 provide
 \[T_{br} > 7 \times 10^{12}\text{K} \]
Why non-equipartition is probably not valid?

• Kellermann & Pauliny-Toth 1969: the idea of the inverse Compton catastrophe and the limiting intrinsic brightness temperature
 \[T_{br} \approx 10^{12} \text{K} \]

• Readhead 1994: the equipartition brightness temperature
 \[T_{br} \approx 10^{11.5} \text{K} \]

• However: recent observations of radio cores by Gomez+ 2016, Kovalev+ 2016, Lisakov+ 2017 provide
 \[T_{br} > 7 \times 10^{12} \text{K} \]
Core-shift measurement

 Equipartition assumption

 Blandford-Konigl scalings
Core-shift measurement

Equi-partition assumption

Blandford-Konigl scalings

Core-shift measurement

Flux (Tb) measurement

Blandford-Konigl scalings
Can we estimate independently the B and n?

Zdziarski, Sikora, Pjanka & Tchekhovskoy, 2015: let us use the flux measurement + core-shift measurement => independent evaluation of B and n in the radio core region. The result is that the magnetic field is nearly equipartition. However, the flux measurements correspond to the sub-equipartition limit.
1. Core-shift effect;
2. Brightness temperature measurement;

\[
\left(\frac{B_{uni}}{G} \right) = 7.4 \times 10^{-4} \frac{\Gamma \delta}{1 + z} \left(\frac{\nu_{obs}}{GHz} \right) \left(\frac{T_{b,obs}}{10^{12} K} \right)^{-2}
\]

\[
\left(\frac{n}{cm^{-3}} \right) = 8.2 \times 10^3 \frac{\Gamma \sin^2 \varphi (1 + z)^7}{2\chi \delta^4} f(2) \times
\]

\[
\times \left(\frac{D_L}{Gpc} \right)^{-1} \left(\frac{\Phi}{mas \ GHz} \right)^{-1} \left(\frac{\nu_{obs}}{GHz} \right)^2 \left(\frac{T_{b,obs}}{10^{12} K} \right)^4
\]
Magnetization of the radiating region: the ratio of magnetic energy flux to the plasma particle energy flux

\[\Sigma = 7.7 \times 10^{-5} \frac{2\chi \Gamma^2 \delta^6}{\sin^2 \varphi (1 + z)^9} \frac{F(2)}{f(2)} \times \]

\[\times \left(\frac{D_L}{G\text{pc}} \right) \left(\frac{\Phi}{\text{mas GHz}} \right) \left(\frac{T_{b,\text{obs}}}{10^{12} K} \right)^{-8} \]

These are the upper limits for B and \(\Sigma \), and the lower limit for n.
BL Lac and 3C273

- BL Lac (Gomez+ 2016)
 - $T_{b,obs} = 7.9 \times 10^{12}$K at $\nu_{obs} = 15$ GHz
 - $B_{uni} = 3.3 \times 10^{-2}$G

- 3C273 (Kovalev+ 2016)
 - $T_{b,obs} = 13 \times 10^{12}$K at $\nu_{obs} = 4.8$ GHz
 - $B_{uni}(high) = 8.1 \times 10^{-3}$G
 - $B_{uni}(low) = 0.13$ G
 - (for $T_b=4 \times 10^{12}$K at $\nu_{obs} = 16.7$ GHz)
What about the total magnetic flux in a jet?

• Dynamically important magnetic field – regulate the accretion rate
What about the total magnetic flux in a jet?

• Dynamically important magnetic field – regulate the accretion rate

• $\Psi_{MAD} \sim 50 \sqrt{\dot{M} r_g^2 c}$
What about magnetic flux in a jet?

Zamaninasab+ 2014:

\[
\frac{B_P}{B_\varphi} \propto a \frac{R_j}{r_g}
\]

From CS+BK+E the measured field \(B_\varphi \), and the flux

\[
\Psi \propto R_j^2 B_P \propto MR_j B_\varphi
\]

Let us account for the transversal jet structure.
Non-uniform model

• Can be obtained solving the non-linear Grad-Shafranov equation on the flux function Ψ. It can be done analytically under certain assumptions: self-similarity, or force-free flow (plasma inertia = 0), or effectively 1D – the cylindrical magnetic surfaces configuration.

• The latter is a good approximation for the well-collimated jets, or a slice of a jet where we may neglect by the opening angle on the interesting for us scales.
Non-uniform model: some analytical results

\[B_P = \frac{\nabla \Psi \times e_\varphi}{2\pi r} \]

\[B_\varphi = -\frac{2I}{r} e_\varphi \]

\[E = -\frac{\Omega_F}{2\pi} \nabla \Psi \]
Non-uniform model: some analytical results

\[B_P = \frac{\nabla \Psi \times e_\phi}{2\pi r} \]

\[B_\phi = -\frac{2I}{r} e_\phi \]

\[E = -\frac{\Omega_F}{2\pi} \nabla \Psi \]

Useful relations:

\[E = B_P \Omega_F r \]
Non-uniform model: some analytical results

\[B_P = \frac{\nabla \Psi \times e_\varphi}{2\pi r} \]
\[B_\varphi = -\frac{2I}{r} e_\varphi \]
\[E = -\frac{\Omega_F}{2\pi} \nabla \Psi \]

Useful relations:
\[E = B_P \Omega_F r \]
From the condition of flux freezing one may obtain (Lyubarsky 2009):
\[B_\varphi \approx B_P \Omega_F r \]
Non-uniform model: some analytical results

\[B_P = \frac{\nabla \Psi \times e_\phi}{2 \pi r} \]

Useful relations:
\[E = B_P \Omega_F r \]

\[B_\phi = -\frac{2I}{r} e_\phi \]

From the condition of flux freezing one may obtain (Lyubarsky 2009):
\[B_\phi \approx B_P \Omega_F r \]

\[B_\phi^2 - E^2 \approx \frac{B_\phi^2}{\Gamma^2} \]
Non-uniform model: some analytical results

\[B_P = \frac{\nabla \Psi \times e_\phi}{2\pi r} \]

\[B_\phi = -\frac{2I}{r} e_\phi \]

\[E = -\frac{\Omega_F}{2\pi} \nabla \Psi \]

For the constant current density \(j \)

\[I = \int j r dr \propto r^2 \]

\[B_\phi \propto r \]

For the zero current density

\[B_\phi \propto r^{-1} \]
Non-uniform model: numerical results

The solution may be obtained doing the numerical simulations:

Tchekhovskoy & Bromberg 2016
Non-uniform model: numerical results

The solution may be obtained doing the numerical simulations:

The central core with constant poloidal magnetic field B_P and linearly growing toroidal magnetic field B_ϕ.

Tchekhovskoy & Bromberg 2016
Non-uniform model: numerical results

The solution may be obtained doing the numerical simulations:

The outer flow with the poloidal magnetic field $B_p \propto r^{-2}$ and the toroidal magnetic field $B_\phi \propto r^{-1}$.

Tchekhovskoy & Bromberg 2016
Non-uniform model: numerical results

The solution may be obtained doing the numerical simulations:

The size of a central core

$R_0 \approx R_L$

At the central core boundary

$B_P = B_\varphi = B_0$

and we call it the magnetic field amplitude.

Tchekhovskoy & Bromberg 2016
Non-uniform model: analytical results
Non-uniform model: analytical results

The central core:

\[n \approx \text{const} \]
\[B_p \approx \text{const} \]
\[B_\varphi \propto r \]
\[\Gamma \approx \text{const} \]
Non-uniform model: analytical results

The outer flow:

\[n \propto r^{-2} \]
\[B_P \propto r^{-2} \]
\[B_{\varphi} \propto r^{-1} \]
\[\Gamma \propto r \]

Nokhrina+ 2015
Non-uniform model: analytical results

The central core size $R_0 \approx 5R_L$

The magnetic field amplitude B_0
Non-uniform model

• The non-uniform n and B distribution leads to non-uniform synchrotron emission

 \[\rho = 4\pi(1.5)^{p-1/2} a(p) a k' e \left(\frac{v'_B}{v'} \right)^{(p+1)/2} \]

 and effective absorption

 \[\kappa = c(p) r_0^2 k' e \left(\frac{v_0}{v'} \right) \left(\frac{v'_B}{v'} \right)^{(p+1)/2} \]

 coefficients (important).

• Different boosting Lorentz factors across the jet cross-section (not important, Nokhrina 2017).
Non-uniform model – B-field

For jets with small viewing angles calculation of the observed flux

\[S_{\nu} = \frac{\delta^3}{d^2} \int \Omega' \frac{\hbar \nu' \rho' dV'}{e^{-\int \kappa' ds'}} \]

can be done analytically. We use the measurements of the brightness temperature for BL Lac (Gomez+ 2016) and 3C273 (Kovalev+ 2016).

BL Lac → \(\varphi = 0.1 \)

3C273 → \(\varphi = 0.067 \)

(using measurements of \(\beta_{app} \) by Lister+ 2013, and Doppler factor by Jorstad+ 2005 and Cohen+ 2007).
Finally, we obtain the following expression for the magnetic field amplitude

\[
\left(\frac{B_0}{G} \right) = 6.4 \times 10^{-4} \Gamma \left(\frac{R_{jet}}{R_L} \right) \frac{\delta}{1 + z} \left(\frac{\nu_{obs}}{\text{GHz}} \right) \left(\frac{T_{b,obs}}{10^{12} K} \right)^{-2}
\]

Compare with the uniform source

\[
\left(\frac{B_{uni}}{G} \right) = 7.4 \times 10^{-4} \Gamma \frac{\delta}{1 + z} \left(\frac{\nu_{obs}}{\text{GHz}} \right) \left(\frac{T_{b,obs}}{10^{12} K} \right)^{-2}
\]
Non-uniform model – B-field

Finally, we obtain the following expression for the magnetic field amplitude

\[
\left(\frac{B_0}{G} \right) = 6.4 \times 10^{-4} \Gamma \left(\frac{R_{jet}}{R_L} \right) \frac{\delta}{1 + z} \left(\frac{\nu_{obs}}{\text{GHz}} \right) \left(\frac{T_{b,obs}}{10^{12} K} \right)^{-2}
\]

Compare with the uniform source

\[
\left(\frac{B_{uni}}{G} \right) = 7.4 \times 10^{-4} \Gamma \frac{\delta}{1 + z} \left(\frac{\nu_{obs}}{\text{GHz}} \right) \left(\frac{T_{b,obs}}{10^{12} K} \right)^{-2}
\]
The expression for the amplitude of non-uniform magnetic field depends on unknown radius of the light cylinder, which is defined by the field lines rotation rate

\[R_L = \frac{c}{\Omega_F} \]

Thus, the amplitude magnetic field is not known directly from the observations (unlike uniform non-equipartition magnetic field amplitude).

However, one may calculate the flux in a jet and compare it with the MAD flux, thus estimating the lower limit for \(\Omega_F \) and rotational rate

\[a = \frac{r_g}{R_L} \]
The non-uniform jet model provides readily the expression for the flux

\[\Psi = 2.7 B_{uni} R_j \frac{r_g}{a} \left[1 + 2 \ln \frac{R_j}{ar_g} \right] \]

Here we used the proportionality of amplitude field \(B_0 \) (can not be estimated independently of \(a \)) and uniform field \(B_{uni} \) (can be estimated independently of \(a \)).

The weak dependence of the expression in square brackets of \(a \) allows to use it to estimate \(a \) comparing the observed flux and MAD flux.
• Magnetic flux predicted by MAD seems to be the flux upper limit
• MAD flux:

\[\Psi_{MAD} \approx 50 \sqrt[\eta_c]{\frac{L_{acc}r_g^2}{\eta_c}} \]

\[a \geq \frac{2.7B_{uni}R_jr_g}{\Psi_{MAD}} \]

• However \(R_j \) may be underestimated through observed angular size

\[R_j = \frac{\theta_{obs}D_L}{(1 + z)^2} \]
BL Lac

\[M = 1.7 \times 10^8 M_\odot \text{ (Woo & Urry 2002)} \]

\[L_{\text{acc}} = 1.5 \times 10^{45} \text{ erg s}^{-1} \text{ (Zamaninasab+ 2014)} \]

\[\Psi_{MAD} = 9.2 \times 10^{32} \text{ G cm}^2 \]

\[B_{\text{uni}} = 3.3 \times 10^{-2} \text{ G} \text{ (Nokhrina 2017)} \]

\[\theta_{\text{obs}} \geq 21 \text{ mas} \text{ (Gomez+ 2016)} \]

\[a = 0.5 \]
3C 273

$M = 10^9 M_\odot$ (Woo & Urry 2002)

$L_{acc} = 1.38 \times 10^{48}$ erg s$^{-1}$ (Punsley & Zhang 2011, Torrealba+ 2012)

$\Psi_{MAD} = 1.6 \times 10^{35} G \text{ cm}^2$

$B_{uni} = 0.13 G$

$\theta_{obs} \geq 275 \text{ mas}$ (Kovalev+ 2016)

$a = 0.01$
Conclusions

• Using the extreme brightness temperatures we obtain the non-equipartition magnetic field for the uniform model

\[B_{uni} \approx 10^{-2} \, G \]

• The non-uniform transversal jet structure provides the estimate for the magnetic flux through observable values and effective rotational rate

\[a = \frac{r_g}{R_L} \]

• Comparison of the flux depending on \(a \) and the flux predicted by MAD may give a clue on how fast the black hole rotates.
Thank you!